Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Geometry-aware stationary subspace analysis (1605.07785v1)

Published 25 May 2016 in cs.LG

Abstract: In many real-world applications data exhibits non-stationarity, i.e., its distribution changes over time. One approach to handling non-stationarity is to remove or minimize it before attempting to analyze the data. In the context of brain computer interface (BCI) data analysis this may be done by means of stationary subspace analysis (SSA). The classic SSA method finds a matrix that projects the data onto a stationary subspace by optimizing a cost function based on a matrix divergence. In this work we present an alternative method for SSA based on a symmetrized version of this matrix divergence. We show that this frames the problem in terms of distances between symmetric positive definite (SPD) matrices, suggesting a geometric interpretation of the problem. Stemming from this geometric viewpoint, we introduce and analyze a method which utilizes the geometry of the SPD matrix manifold and the invariance properties of its metrics. Most notably we show that these invariances alleviate the need to whiten the input matrices, a common step in many SSA methods which often introduces errors. We demonstrate the usefulness of our technique in experiments on both synthesized and real-world data.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.