Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Divergence Framework for EEG based Multiclass Motor Imagery Brain Computer Interface (1901.07457v1)

Published 12 Jan 2019 in q-bio.QM, cs.HC, eess.IV, and eess.SP

Abstract: Similar to most of the real world data, the ubiquitous presence of non-stationarities in the EEG signals significantly perturb the feature distribution thus deteriorating the performance of Brain Computer Interface. In this letter, a novel method is proposed based on Joint Approximate Diagonalization (JAD) to optimize stationarity for multiclass motor imagery Brain Computer Interface (BCI) in an information theoretic framework. Specifically, in the proposed method, we estimate the subspace which optimizes the discriminability between the classes and simultaneously preserve stationarity within the motor imagery classes. We determine the subspace for the proposed approach through optimization using gradient descent on an orthogonal manifold. The performance of the proposed stationarity enforcing algorithm is compared to that of baseline One-Versus-Rest (OVR)-CSP and JAD on publicly available BCI competition IV dataset IIa. Results show that an improvement in average classification accuracies across the subjects over the baseline algorithms and thus essence of alleviating within session non-stationarities.

Citations (4)

Summary

We haven't generated a summary for this paper yet.