Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Algebraic Geometric Approach to Nivat's Conjecture (1605.05929v1)

Published 19 May 2016 in cs.DM and math.CO

Abstract: We study multidimensional configurations (infinite words) and subshifts of low pattern complexity using tools of algebraic geometry. We express the configuration as a multivariate formal power series over integers and investigate the setup when there is a non-trivial annihilating polynomial: a non-zero polynomial whose formal product with the power series is zero. Such annihilator exists, for example, if the number of distinct patterns of some finite shape $D$ in the configuration is at most the size $|D|$ of the shape. This is our low pattern complexity assumption. We prove that the configuration must be a sum of periodic configurations over integers, possibly with unbounded values. As a specific application of the method we obtain an asymptotic version of the well-known Nivat's conjecture: we prove that any two-dimensional, non-periodic configuration can satisfy the low pattern complexity assumption with respect to only finitely many distinct rectangular shapes $D$.

Citations (52)

Summary

We haven't generated a summary for this paper yet.