Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized Matrix-free Trace and Log-Determinant Estimators (1605.04893v2)

Published 16 May 2016 in math.NA

Abstract: We present randomized algorithms for estimating the trace and deter- minant of Hermitian positive semi-definite matrices. The algorithms are based on subspace iteration, and access the matrix only through matrix vector products. We analyse the error due to randomization, for starting guesses whose elements are Gaussian or Rademacher random variables. The analysis is cleanly separated into a structural (deterministic) part followed by a probabilistic part. Our absolute bounds for the expectation and concentration of the estimators are non-asymptotic and informative even for matrices of low dimension. For the trace estimators, we also present asymptotic bounds on the number of samples (columns of the starting guess) required to achieve a user-specified relative error. Numerical experiments illustrate the performance of the estimators and the tightness of the bounds on low-dimensional matrices; and on a challenging application in uncertainty quantification arising from Bayesian optimal experimental design.

Summary

We haven't generated a summary for this paper yet.