Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Log-linear Combinations of Monolingual and Bilingual Neural Machine Translation Models for Automatic Post-Editing (1605.04800v2)

Published 16 May 2016 in cs.CL

Abstract: This paper describes the submission of the AMU (Adam Mickiewicz University) team to the Automatic Post-Editing (APE) task of WMT 2016. We explore the application of neural translation models to the APE problem and achieve good results by treating different models as components in a log-linear model, allowing for multiple inputs (the MT-output and the source) that are decoded to the same target language (post-edited translations). A simple string-matching penalty integrated within the log-linear model is used to control for higher faithfulness with regard to the raw machine translation output. To overcome the problem of too little training data, we generate large amounts of artificial data. Our submission improves over the uncorrected baseline on the unseen test set by -3.2\% TER and +5.5\% BLEU and outperforms any other system submitted to the shared-task by a large margin.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Marcin Junczys-Dowmunt (29 papers)
  2. Roman Grundkiewicz (16 papers)
Citations (108)

Summary

We haven't generated a summary for this paper yet.