Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 62 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

An Algorithmic Framework for Labeling Road Maps (1605.04265v1)

Published 13 May 2016 in cs.CG

Abstract: Given an unlabeled road map, we consider, from an algorithmic perspective, the cartographic problem to place non-overlapping road labels embedded in their roads. We first decompose the road network into logically coherent road sections, e.g., parts of roads between two junctions. Based on this decomposition, we present and implement a new and versatile framework for placing labels in road maps such that the number of labeled road sections is maximized. In an experimental evaluation with road maps of 11 major cities we show that our proposed labeling algorithm is both fast in practice and that it reaches near-optimal solution quality, where optimal solutions are obtained by mixed-integer linear programming. In comparison to the standard OpenStreetMap renderer Mapnik, our algorithm labels 31% more road sections in average.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.