Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Building a Large Scale Dataset for Image Emotion Recognition: The Fine Print and The Benchmark (1605.02677v1)

Published 9 May 2016 in cs.AI and cs.CV

Abstract: Psychological research results have confirmed that people can have different emotional reactions to different visual stimuli. Several papers have been published on the problem of visual emotion analysis. In particular, attempts have been made to analyze and predict people's emotional reaction towards images. To this end, different kinds of hand-tuned features are proposed. The results reported on several carefully selected and labeled small image data sets have confirmed the promise of such features. While the recent successes of many computer vision related tasks are due to the adoption of Convolutional Neural Networks (CNNs), visual emotion analysis has not achieved the same level of success. This may be primarily due to the unavailability of confidently labeled and relatively large image data sets for visual emotion analysis. In this work, we introduce a new data set, which started from 3+ million weakly labeled images of different emotions and ended up 30 times as large as the current largest publicly available visual emotion data set. We hope that this data set encourages further research on visual emotion analysis. We also perform extensive benchmarking analyses on this large data set using the state of the art methods including CNNs.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Quanzeng You (41 papers)
  2. Jiebo Luo (355 papers)
  3. Hailin Jin (53 papers)
  4. Jianchao Yang (48 papers)
Citations (293)

Summary

We haven't generated a summary for this paper yet.