Papers
Topics
Authors
Recent
Search
2000 character limit reached

Parametric Object Motion from Blur

Published 20 Apr 2016 in cs.CV | (1604.05933v1)

Abstract: Motion blur can adversely affect a number of vision tasks, hence it is generally considered a nuisance. We instead treat motion blur as a useful signal that allows to compute the motion of objects from a single image. Drawing on the success of joint segmentation and parametric motion models in the context of optical flow estimation, we propose a parametric object motion model combined with a segmentation mask to exploit localized, non-uniform motion blur. Our parametric image formation model is differentiable w.r.t. the motion parameters, which enables us to generalize marginal-likelihood techniques from uniform blind deblurring to localized, non-uniform blur. A two-stage pipeline, first in derivative space and then in image space, allows to estimate both parametric object motion as well as a motion segmentation from a single image alone. Our experiments demonstrate its ability to cope with very challenging cases of object motion blur.

Citations (22)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.