Papers
Topics
Authors
Recent
Search
2000 character limit reached

Emergent dynamics of the Cucker-Smale flocking model and its variants

Published 17 Apr 2016 in math.AP | (1604.04887v1)

Abstract: In this chapter, we present the Cucker-Smale type flocking models, and discuss their mathematical structures and flocking theorems in terms of coupling strength, interaction topologies and initial data. In 2007, two mathematicians Felipe Cucker and Steve Smale introduced a second-order particle model which resembles Newton's equations in $N$-body system, and present how their simple model can exhibit emergent flocking behavior under sufficient conditions expressed only in terms of parameters and initial data. After Cucker-Smale's seminal works, their model has received lots of attention from applied math and control engineering communities. We discuss the state-of-art for the flocking theorems to Cucker-Smale type flocking models.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.