Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Infrared Colorization Using Deep Convolutional Neural Networks (1604.02245v3)

Published 8 Apr 2016 in cs.CV and cs.GR

Abstract: This paper proposes a method for transferring the RGB color spectrum to near-infrared (NIR) images using deep multi-scale convolutional neural networks. A direct and integrated transfer between NIR and RGB pixels is trained. The trained model does not require any user guidance or a reference image database in the recall phase to produce images with a natural appearance. To preserve the rich details of the NIR image, its high frequency features are transferred to the estimated RGB image. The presented approach is trained and evaluated on a real-world dataset containing a large amount of road scene images in summer. The dataset was captured by a multi-CCD NIR/RGB camera, which ensures a perfect pixel to pixel registration.

Citations (136)

Summary

We haven't generated a summary for this paper yet.