Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Scene Text Detection Algorithm Based On Convolutional Neural Network (1604.01894v1)

Published 7 Apr 2016 in cs.CV

Abstract: Candidate text region extraction plays a critical role in convolutional neural network (CNN) based text detection from natural images. In this paper, we propose a CNN based scene text detection algorithm with a new text region extractor. The so called candidate text region extractor I-MSER is based on Maximally Stable Extremal Region (MSER), which can improve the independency and completeness of the extracted candidate text regions. Design of I-MSER is motivated by the observation that text MSERs have high similarity and are close to each other. The independency of candidate text regions obtained by I-MSER is guaranteed by selecting the most representative regions from a MSER tree which is generated according to the spatial overlapping relationship among the MSERs. A multi-layer CNN model is trained to score the confidence value of the extracted regions extracted by the I-MSER for text detection. The new text detection algorithm based on I-MSER is evaluated with wide-used ICDAR 2011 and 2013 datasets and shows improved detection performance compared to the existing algorithms.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xiaohang Ren (4 papers)
  2. Kai Chen (512 papers)
  3. Jun Sun (210 papers)
Citations (6)