Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Progressive Temporal Window Widening (1604.00997v3)

Published 4 Apr 2016 in cs.DC

Abstract: This paper introduces a scheme for data stream processing which is robust to batch duration. Streaming frameworks process streams in batches retrieved at fixed time intervals. In a common setting a pattern recognition algorithm is applied independently to each batch. Choosing the right time interval is tough --- a pattern may not fit in an interval which is too short, but detection will be delayed and memory may be exhausted if the interval is too long. We propose here Progressive Window Widening, an algorithm for increasing the interval gradually so that patterns are caught at any pace without unnecessary delays or memory overflow. This algorithm is relevant to computer security, system monitoring, user behavior tracking, and other applications where patterns of unknown or varying duration must be recognized online in data streams. Modern data stream processing frameworks are ubiquitously used to process high volumes of data, and adaptive memory and CPU allocation, facilitated by Progressive Window Widening, is crucial for their performance.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)