Papers
Topics
Authors
Recent
2000 character limit reached

Online Learning with Low Rank Experts

Published 21 Mar 2016 in cs.LG | (1603.06352v2)

Abstract: We consider the problem of prediction with expert advice when the losses of the experts have low-dimensional structure: they are restricted to an unknown $d$-dimensional subspace. We devise algorithms with regret bounds that are independent of the number of experts and depend only on the rank $d$. For the stochastic model we show a tight bound of $\Theta(\sqrt{dT})$, and extend it to a setting of an approximate $d$ subspace. For the adversarial model we show an upper bound of $O(d\sqrt{T})$ and a lower bound of $\Omega(\sqrt{dT})$.

Citations (15)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.