Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Private Online Prediction from Experts: Separations and Faster Rates (2210.13537v3)

Published 24 Oct 2022 in cs.LG, cs.CR, math.OC, and stat.ML

Abstract: Online prediction from experts is a fundamental problem in machine learning and several works have studied this problem under privacy constraints. We propose and analyze new algorithms for this problem that improve over the regret bounds of the best existing algorithms for non-adaptive adversaries. For approximate differential privacy, our algorithms achieve regret bounds of $\tilde{O}(\sqrt{T \log d} + \log d/\varepsilon)$ for the stochastic setting and $\tilde{O}(\sqrt{T \log d} + T{1/3} \log d/\varepsilon)$ for oblivious adversaries (where $d$ is the number of experts). For pure DP, our algorithms are the first to obtain sub-linear regret for oblivious adversaries in the high-dimensional regime $d \ge T$. Moreover, we prove new lower bounds for adaptive adversaries. Our results imply that unlike the non-private setting, there is a strong separation between the optimal regret for adaptive and non-adaptive adversaries for this problem. Our lower bounds also show a separation between pure and approximate differential privacy for adaptive adversaries where the latter is necessary to achieve the non-private $O(\sqrt{T})$ regret.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Hilal Asi (29 papers)
  2. Vitaly Feldman (71 papers)
  3. Tomer Koren (79 papers)
  4. Kunal Talwar (83 papers)
Citations (17)

Summary

We haven't generated a summary for this paper yet.