Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Thread Progress Equalization: Dynamically Adaptive Power and Performance Optimization of Multi-threaded Applications (1603.06346v1)

Published 21 Mar 2016 in cs.DC

Abstract: Dynamically adaptive multi-core architectures have been proposed as an effective solution to optimize performance for peak power constrained processors. In processors, the micro-architectural parameters or voltage/frequency of each core to be changed at run-time, thus providing a range of power/performance operating points for each core. In this paper, we propose Thread Progress Equalization (TPEq), a run-time mechanism for power constrained performance maximization of multithreaded applications running on dynamically adaptive multicore processors. Compared to existing approaches, TPEq (i) identifies and addresses two primary sources of inter-thread heterogeneity in multithreaded applications, (ii) determines the optimal core configurations in polynomial time with respect to the number of cores and configurations, and (iii) requires no modifications in the user-level source code. Our experimental evaluations demonstrate that TPEq outperforms state-of-the-art run-time power/performance optimization techniques proposed in literature for dynamically adaptive multicores by up to 23%.

Citations (5)

Summary

We haven't generated a summary for this paper yet.