Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating the word-expert approach for Named-Entity Disambiguation (1603.04767v1)

Published 15 Mar 2016 in cs.CL

Abstract: Named Entity Disambiguation (NED) is the task of linking a named-entity mention to an instance in a knowledge-base, typically Wikipedia. This task is closely related to word-sense disambiguation (WSD), where the supervised word-expert approach has prevailed. In this work we present the results of the word-expert approach to NED, where one classifier is built for each target entity mention string. The resources necessary to build the system, a dictionary and a set of training instances, have been automatically derived from Wikipedia. We provide empirical evidence of the value of this approach, as well as a study of the differences between WSD and NED, including ambiguity and synonymy statistics.

Citations (9)

Summary

We haven't generated a summary for this paper yet.