Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pushing the Limits of Deep CNNs for Pedestrian Detection (1603.04525v2)

Published 15 Mar 2016 in cs.CV

Abstract: Compared to other applications in computer vision, convolutional neural networks have under-performed on pedestrian detection. A breakthrough was made very recently by using sophisticated deep CNN models, with a number of hand-crafted features, or explicit occlusion handling mechanism. In this work, we show that by re-using the convolutional feature maps (CFMs) of a deep convolutional neural network (DCNN) model as image features to train an ensemble of boosted decision models, we are able to achieve the best reported accuracy without using specially designed learning algorithms. We empirically identify and disclose important implementation details. We also show that pixel labelling may be simply combined with a detector to boost the detection performance. By adding complementary hand-crafted features such as optical flow, the DCNN based detector can be further improved. We set a new record on the Caltech pedestrian dataset, lowering the log-average miss rate from $11.7\%$ to $8.9\%$, a relative improvement of $24\%$. We also achieve a comparable result to the state-of-the-art approaches on the KITTI dataset.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Qichang Hu (2 papers)
  2. Peng Wang (832 papers)
  3. Chunhua Shen (404 papers)
  4. Anton van den Hengel (188 papers)
  5. Fatih Porikli (141 papers)
Citations (92)

Summary

We haven't generated a summary for this paper yet.