Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Controlling Search in Very large Commonsense Knowledge Bases: A Machine Learning Approach (1603.04402v1)

Published 14 Mar 2016 in cs.AI

Abstract: Very large commonsense knowledge bases (KBs) often have thousands to millions of axioms, of which relatively few are relevant for answering any given query. A large number of irrelevant axioms can easily overwhelm resolution-based theorem provers. Therefore, methods that help the reasoner identify useful inference paths form an essential part of large-scale reasoning systems. In this paper, we describe two ordering heuristics for optimization of reasoning in such systems. First, we discuss how decision trees can be used to select inference steps that are more likely to succeed. Second, we identify a small set of problem instance features that suffice to guide searches away from intractable regions of the search space. We show the efficacy of these techniques via experiments on thousands of queries from the Cyc KB. Results show that these methods lead to an order of magnitude reduction in inference time.

Citations (3)

Summary

We haven't generated a summary for this paper yet.