Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning to Blend Computer Game Levels (1603.02738v1)

Published 8 Mar 2016 in cs.AI

Abstract: We present an approach to generate novel computer game levels that blend different game concepts in an unsupervised fashion. Our primary contribution is an analogical reasoning process to construct blends between level design models learned from gameplay videos. The models represent probabilistic relationships between elements in the game. An analogical reasoning process maps features between two models to produce blended models that can then generate new level chunks. As a proof-of-concept we train our system on the classic platformer game Super Mario Bros. due to its highly-regarded and well understood level design. We evaluate the extent to which the models represent stylistic level design knowledge and demonstrate the ability of our system to explain levels that were blended by human expert designers.

Citations (34)

Summary

We haven't generated a summary for this paper yet.