Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantifying Causal Effects on Query Answering in Databases (1603.02705v2)

Published 8 Mar 2016 in cs.DB

Abstract: The notion of actual causation, as formalized by Halpern and Pearl, has been recently applied to relational databases, to characterize and compute actual causes for possibly unexpected answers to monotone queries. Causes take the form of database tuples, and can be ranked according to their causal responsibility, a numerical measure of their relevance as a cause to the query answer. In this work we revisit this notion, introducing and making a case for an alternative measure of causal contribution, that of causal effect. The measure generalizes actual causes, and can be applied beyond monotone queries. We show that causal effect provides intuitive and intended results.

Citations (42)

Summary

We haven't generated a summary for this paper yet.