Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sequential ranking under random semi-bandit feedback (1603.01450v2)

Published 4 Mar 2016 in cs.DS and cs.LG

Abstract: In many web applications, a recommendation is not a single item suggested to a user but a list of possibly interesting contents that may be ranked in some contexts. The combinatorial bandit problem has been studied quite extensively these last two years and many theoretical results now exist : lower bounds on the regret or asymptotically optimal algorithms. However, because of the variety of situations that can be considered, results are designed to solve the problem for a specific reward structure such as the Cascade Model. The present work focuses on the problem of ranking items when the user is allowed to click on several items while scanning the list from top to bottom.

Summary

We haven't generated a summary for this paper yet.