Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lasso estimation for GEFCom2014 probabilistic electric load forecasting (1603.01376v1)

Published 4 Mar 2016 in stat.AP and stat.ML

Abstract: We present a methodology for probabilistic load forecasting that is based on lasso (least absolute shrinkage and selection operator) estimation. The model considered can be regarded as a bivariate time-varying threshold autoregressive(AR) process for the hourly electric load and temperature. The joint modeling approach incorporates the temperature effects directly, and reflects daily, weekly, and annual seasonal patterns and public holiday effects. We provide two empirical studies, one based on the probabilistic load forecasting track of the Global Energy Forecasting Competition 2014 (GEFCom2014-L), and the other based on another recent probabilistic load forecasting competition that follows a setup similar to that of GEFCom2014-L. In both empirical case studies, the proposed methodology outperforms two multiple linear regression based benchmarks from among the top eight entries to GEFCom2014-L.

Citations (70)

Summary

We haven't generated a summary for this paper yet.