Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Selective Uplink Training for Massive MIMO Systems (1602.08857v1)

Published 29 Feb 2016 in cs.IT and math.IT

Abstract: As a promising technique to meet the drastically growing demand for both high throughput and uniform coverage in the fifth generation (5G) wireless networks, massive multiple-input multiple-output (MIMO) systems have attracted significant attention in recent years. However, in massive MIMO systems, as the density of mobile users (MUs) increases, conventional uplink training methods will incur prohibitively high training overhead, which is proportional to the number of MUs. In this paper, we propose a selective uplink training method for massive MIMO systems, where in each channel block only part of the MUs will send uplink pilots for channel training, and the channel states of the remaining MUs are predicted from the estimates in previous blocks, taking advantage of the channels' temporal correlation. We propose an efficient algorithm to dynamically select the MUs to be trained within each block and determine the optimal uplink training length. Simulation results show that the proposed training method provides significant throughput gains compared to the existing methods, while much lower estimation complexity is achieved. It is observed that the throughput gain becomes higher as the MU density increases.

Citations (15)

Summary

We haven't generated a summary for this paper yet.