Expectation Consistent Approximate Inference: Generalizations and Convergence
Abstract: Approximations of loopy belief propagation, including expectation propagation and approximate message passing, have attracted considerable attention for probabilistic inference problems. This paper proposes and analyzes a generalization of Opper and Winther's expectation consistent (EC) approximate inference method. The proposed method, called Generalized Expectation Consistency (GEC), can be applied to both maximum a posteriori (MAP) and minimum mean squared error (MMSE) estimation. Here we characterize its fixed points, convergence, and performance relative to the replica prediction of optimality.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.