Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-parametric Order-based Generalized Multivariate Regression (1602.06276v1)

Published 19 Feb 2016 in stat.ML, math.ST, and stat.TH

Abstract: In this paper, we consider a generalized multivariate regression problem where the responses are monotonic functions of linear transformations of predictors. We propose a semi-parametric algorithm based on the ordering of the responses which is invariant to the functional form of the transformation function. We prove that our algorithm, which maximizes the rank correlation of responses and linear transformations of predictors, is a consistent estimator of the true coefficient matrix. We also identify the rate of convergence and show that the squared estimation error decays with a rate of $o(1/\sqrt{n})$. We then propose a greedy algorithm to maximize the highly non-smooth objective function of our model and examine its performance through extensive simulations. Finally, we compare our algorithm with traditional multivariate regression algorithms over synthetic and real data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.