Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Do We Need Binary Features for 3D Reconstruction? (1602.04502v1)

Published 14 Feb 2016 in cs.CV

Abstract: Binary features have been incrementally popular in the past few years due to their low memory footprints and the efficient computation of Hamming distance between binary descriptors. They have been shown with promising results on some real time applications, e.g., SLAM, where the matching operations are relative few. However, in computer vision, there are many applications such as 3D reconstruction requiring lots of matching operations between local features. Therefore, a natural question is that is the binary feature still a promising solution to this kind of applications? To get the answer, this paper conducts a comparative study of binary features and their matching methods on the context of 3D reconstruction in a recently proposed large scale mutliview stereo dataset. Our evaluations reveal that not all binary features are capable of this task. Most of them are inferior to the classical SIFT based method in terms of reconstruction accuracy and completeness with a not significant better computational performance.

Citations (6)

Summary

We haven't generated a summary for this paper yet.