Papers
Topics
Authors
Recent
2000 character limit reached

Universal geometric coefficients for the four-punctured sphere (1602.03448v2)

Published 10 Feb 2016 in math.CO

Abstract: We construct universal geometric coefficients for the cluster algebra associated to the four-punctured sphere and obtain, as a by-product, the g-vectors of cluster variables. We also construct the rational part of the mutation fan. These constructions rely on a classification of the allowable curves (the curves which can appear in quasi-laminations). The classification allows us to prove the Null Tangle Property for the four-punctured sphere, thus adding this surface to a short list of surfaces for which this property is known. The Null Tangle Property then implies that the shear coordinates of allowable curves are the universal coefficients. We compute shear coordinates explicitly to obtain universal geometric coefficients.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.