Papers
Topics
Authors
Recent
2000 character limit reached

Universal geometric cluster algebras (1209.3987v5)

Published 18 Sep 2012 in math.RA, math.CO, and math.RT

Abstract: We consider, for each exchange matrix B, a category of geometric cluster algebras over B and coefficient specializations between the cluster algebras. The category also depends on an underlying ring R, usually the integers, rationals, or reals. We broaden the definition of geometric cluster algebras slightly over the usual definition and adjust the definition of coefficient specializations accordingly. If the broader category admits a universal object, the universal object is called the cluster algebra over B with universal geometric coefficients, or the universal geometric cluster algebra over B. Constructing universal coefficients is equivalent to finding an R-basis for B (a "mutation-linear" analog of the usual linear-algebraic notion of a basis). Polyhedral geometry plays a key role, through the mutation fan F_B, which we suspect to be an important object beyond its role in constructing universal geometric coefficients. We make the connection between F_B and g-vectors. We construct universal geometric coefficients in rank 2 and in finite type and discuss the construction in affine type.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.