Papers
Topics
Authors
Recent
2000 character limit reached

Legendre Functions of Fractional Degree: Transformations and Evaluations

Published 9 Feb 2016 in math.CA | (1602.03070v1)

Abstract: Associated Legendre functions of fractional degree appear in the solution of boundary value problems in wedges or in toroidal geometries, and elsewhere in applied mathematics. In the classical case when the degree is half an odd integer, they can be expressed using complete elliptic integrals. In this study, many transformations are derived, which reduce the case when the degree differs from an integer by one-third, one-fourth or one-sixth to the classical case. These transformations, or identities, facilitate the symbolic manipulation and evaluation of Legendre and Ferrers functions. They generalize both Ramanujan's transformations of elliptic integrals and Whipple's formula, which relates Legendre functions of the first and second kinds. The proofs employ algebraic coordinate transformations, specified by algebraic curves.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.