Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Associated Legendre Functions and Spherical Harmonics of Fractional Degree and Order (1702.08555v3)

Published 27 Feb 2017 in math.CA, math-ph, and math.MP

Abstract: Trigonometric formulas are derived for certain families of associated Legendre functions of fractional degree and order, for use in approximation theory. These functions are algebraic, and when viewed as Gauss hypergeometric functions, belong to types classified by Schwarz, with dihedral, tetrahedral, or octahedral monodromy. The dihedral Legendre functions are expressed in terms of Jacobi polynomials. For the last two monodromy types, an underlying `octahedral' polynomial, indexed by the degree and order and having a non-classical kind of orthogonality, is identified, and recurrences for it are worked out. It is a (generalized) Heun polynomial, not a hypergeometric one. For each of these families of algebraic associated Legendre functions, a representation of the rank-2 Lie algebra so(5,C) is generated by the ladder operators that shift the degree and order of the corresponding solid harmonics. All such representations of so(5,C) are shown to have a common value for each of its two Casimir invariants. The Dirac singleton representations of so(3,2) are included.

Summary

We haven't generated a summary for this paper yet.