Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Level-set methods for convex optimization (1602.01506v1)

Published 3 Feb 2016 in math.OC and cs.NA

Abstract: Convex optimization problems arising in applications often have favorable objective functions and complicated constraints, thereby precluding first-order methods from being immediately applicable. We describe an approach that exchanges the roles of the objective and constraint functions, and instead approximately solves a sequence of parametric level-set problems. A zero-finding procedure, based on inexact function evaluations and possibly inexact derivative information, leads to an efficient solution scheme for the original problem. We describe the theoretical and practical properties of this approach for a broad range of problems, including low-rank semidefinite optimization, sparse optimization, and generalized linear models for inference.

Citations (61)

Summary

We haven't generated a summary for this paper yet.