Papers
Topics
Authors
Recent
2000 character limit reached

Inexact Proximal-Point Penalty Methods for Constrained Non-Convex Optimization

Published 30 Aug 2019 in math.OC, cs.CC, cs.NA, and math.NA | (1908.11518v4)

Abstract: In this paper, an inexact proximal-point penalty method is studied for constrained optimization problems, where the objective function is non-convex, and the constraint functions can also be non-convex. The proposed method approximately solves a sequence of subproblems, each of which is formed by adding to the original objective function a proximal term and quadratic penalty terms associated to the constraint functions. Under a weak-convexity assumption, each subproblem is made strongly convex and can be solved effectively to a required accuracy by an optimal gradient-based method. The computational complexity of the proposed method is analyzed separately for the cases of convex constraint and non-convex constraint. For both cases, the complexity results are established in terms of the number of proximal gradient steps needed to find an $\varepsilon$-stationary point. When the constraint functions are convex, we show a complexity result of $\tilde O(\varepsilon{-5/2})$ to produce an $\varepsilon$-stationary point under the Slater's condition. When the constraint functions are non-convex, the complexity becomes $\tilde O(\varepsilon{-3})$ if a non-singularity condition holds on constraints and otherwise $\tilde O(\varepsilon{-4})$ if a feasible initial solution is available.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.