Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Max Consensus in Sensor Networks: Non-linear Bounded Transmission and Additive Noise (1602.01128v1)

Published 2 Feb 2016 in cs.SY

Abstract: A distributed consensus algorithm for estimating the maximum value of the initial measurements in a sensor network with communication noise is proposed. In the absence of communication noise, max estimation can be done by updating the state value with the largest received measurements in every iteration at each sensor. In the presence of communication noise, however, the maximum estimate will incorrectly drift and the estimate at each sensor will diverge. As a result, a soft-max approximation together with a non-linear consensus algorithm is introduced herein. A design parameter controls the trade-off between the soft-max error and convergence speed. An analysis of this trade-off gives a guideline towards how to choose the design parameter for the max estimate. We also show that if some prior knowledge of the initial measurements is available, the consensus process can converge faster by using an optimal step size in the iterative algorithm. A shifted non-linear bounded transmit function is also introduced for faster convergence when sensor nodes have some prior knowledge of the initial measurements. Simulation results corroborating the theory are also provided.

Citations (43)

Summary

We haven't generated a summary for this paper yet.