Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Deep Learning Based Fast Image Saliency Detection Algorithm (1602.00577v1)

Published 1 Feb 2016 in cs.CV

Abstract: In this paper, we propose a fast deep learning method for object saliency detection using convolutional neural networks. In our approach, we use a gradient descent method to iteratively modify the input images based on the pixel-wise gradients to reduce a pre-defined cost function, which is defined to measure the class-specific objectness and clamp the class-irrelevant outputs to maintain image background. The pixel-wise gradients can be efficiently computed using the back-propagation algorithm. We further apply SLIC superpixels and LAB color based low level saliency features to smooth and refine the gradients. Our methods are quite computationally efficient, much faster than other deep learning based saliency methods. Experimental results on two benchmark tasks, namely Pascal VOC 2012 and MSRA10k, have shown that our proposed methods can generate high-quality salience maps, at least comparable with many slow and complicated deep learning methods. Comparing with the pure low-level methods, our approach excels in handling many difficult images, which contain complex background, highly-variable salient objects, multiple objects, and/or very small salient objects.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hengyue Pan (19 papers)
  2. Hui Jiang (99 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.