Finding Outliers in Surface Data and Video
Abstract: Surface, image and video data can be considered as functional data with a bivariate domain. To detect outlying surfaces or images, a new method is proposed based on the mean and the variability of the degree of outlyingness at each grid point. A rule is constructed to flag the outliers in the resulting functional outlier map. Heatmaps of their outlyingness indicate the regions which are most deviating from the regular surfaces. The method is applied to fluorescence excitation-emission spectra after fitting a PARAFAC model, to MRI image data which are augmented with their gradients, and to video surveillance data.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.