Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uncertainty quantification for distributed regression (2105.11425v1)

Published 24 May 2021 in stat.ML and cs.LG

Abstract: The ever-growing size of the datasets renders well-studied learning techniques, such as Kernel Ridge Regression, inapplicable, posing a serious computational challenge. Divide-and-conquer is a common remedy, suggesting to split the dataset into disjoint partitions, obtain the local estimates and average them, it allows to scale-up an otherwise ineffective base approach. In the current study we suggest a fully data-driven approach to quantify uncertainty of the averaged estimator. Namely, we construct simultaneous element-wise confidence bands for the predictions yielded by the averaged estimator on a given deterministic prediction set. The novel approach features rigorous theoretical guaranties for a wide class of base learners with Kernel Ridge regression being a special case. As a by-product of our analysis we also obtain a sup-norm consistency result for the divide-and-conquer Kernel Ridge Regression. The simulation study supports the theoretical findings.

Summary

We haven't generated a summary for this paper yet.