Papers
Topics
Authors
Recent
Search
2000 character limit reached

The limiting spectral distribution in terms of spectral density

Published 17 Jan 2016 in math.PR | (1601.04362v2)

Abstract: For a large class of symmetric random matrices with correlated entries, selected from stationary random fields of centered and square integrable variables, we show that the limiting distribution of eigenvalue counting measure always exists and we describe it via an equation satisfied by its Stieltjes transform. No rate of convergence to zero of correlations is imposed, therefore the process is allowed to have long memory. In particular, if the symmetrized matrices are constructed from stationary Gaussian random fields which have spectral density, the result of this paper gives a complete solution to the limiting eigenvalue distribution. More generally, for matrices whose entries are functions of independent identically distributed random variables the result also holds.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.