Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 385 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Approximation of backward stochastic differential equations using Malliavin weights and least-squares regression (1601.01186v1)

Published 6 Jan 2016 in math.ST and stat.TH

Abstract: We design a numerical scheme for solving a Dynamic Programming equation with Malliavin weights arising from the time-discretization of backward stochastic differential equations with the integration by parts-representation of the $Z$-component by (Ann. Appl. Probab. 12 (2002) 1390-1418). When the sequence of conditional expectations is computed using empirical least-squares regressions, we establish, under general conditions, tight error bounds as the time-average of local regression errors only (up to logarithmic factors). We compute the algorithm complexity by a suitable optimization of the parameters, depending on the dimension and the smoothness of value functions, in the limit as the number of grid times goes to infinity. The estimates take into account the regularity of the terminal function.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube