2000 character limit reached
Cohomology of finite modules over short Gorenstein rings (1601.00930v1)
Published 5 Jan 2016 in math.AC
Abstract: Let $R$ be a Gorenstein local ring with maximal ideal $\mathfrak{m}$ satisfying $\mathfrak{m}3=0\ne\mathfrak{m}2$. Set $k=R/\mathfrak{m}$ and $e=\text{rank}{k}(\mathfrak{m}/\mathfrak{m}2)$. If $e>2$ and $M$, $N$ are finitely generated $R$-modules, we show that the formal power series $\sum{i=0}\infty\text{rank}_{k}\left(\text{Ext}i_R(M,N)\otimes_R k \right)ti$ and $\sum_{i=0}\infty\text{rank}_{k}\left(\text{Tor}_iR(M,N)\otimes_R k \right)ti$ are rational, with denominator $1-et+t2$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.