Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

When more of the same is better (1601.00313v2)

Published 3 Jan 2016 in cs.MA and physics.soc-ph

Abstract: Problem solving (e.g., drug design, traffic engineering, software development) by task forces represents a substantial portion of the economy of developed countries. Here we use an agent-based model of cooperative problem solving systems to study the influence of diversity on the performance of a task force. We assume that agents cooperate by exchanging information on their partial success and use that information to imitate the more successful agent in the system -- the model. The agents differ only in their propensities to copy the model. We find that, for easy tasks, the optimal organization is a homogeneous system composed of agents with the highest possible copy propensities. For difficult tasks, we find that diversity can prevent the system from being trapped in sub-optimal solutions. However, when the system size is adjusted to maximize performance the homogeneous systems outperform the heterogeneous systems, i.e., for optimal performance, sameness should be preferred to diversity.

Citations (11)

Summary

We haven't generated a summary for this paper yet.