Papers
Topics
Authors
Recent
2000 character limit reached

Hodge Theory and Deformations of Affine Cones of Subcanonical Projective Varieties (1512.00835v4)

Published 2 Dec 2015 in math.AG

Abstract: We investigate the relation between the Hodge theory of a smooth subcanonical $n$-dimensional projective variety $X$ and the deformation theory of the affine cone $A_X$ over $X$. We start by identifying $H{n-1,1}_{\mathrm{prim}}(X)$ as a distinguished graded component of the module of first order deformations of $A_X$, and later on we show how to identify the whole primitive cohomology of $X$ as a distinguished graded component of the Hochschild cohomology module of the punctured affine cone over $X$. In the particular case of a projective smooth hypersurface $X$ we recover Griffiths' isomorphism between the primitive cohomology of $X$ and certain distinguished graded components of the Milnor algebra of a polynomial defining $X$. The main result of the article can be effectively exploited to compute Hodge numbers of smooth subcanonical projective varieties. We provide a few example computation, as well a SINGULAR code, for Fano and Calabi-Yau threefolds.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.