Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SCUT-FBP: A Benchmark Dataset for Facial Beauty Perception (1511.02459v1)

Published 8 Nov 2015 in cs.CV

Abstract: In this paper, a novel face dataset with attractiveness ratings, namely, the SCUT-FBP dataset, is developed for automatic facial beauty perception. This dataset provides a benchmark to evaluate the performance of different methods for facial attractiveness prediction, including the state-of-the-art deep learning method. The SCUT-FBP dataset contains face portraits of 500 Asian female subjects with attractiveness ratings, all of which have been verified in terms of rating distribution, standard deviation, consistency, and self-consistency. Benchmark evaluations for facial attractiveness prediction were performed with different combinations of facial geometrical features and texture features using classical statistical learning methods and the deep learning method. The best Pearson correlation (0.8187) was achieved by the CNN model. Thus, the results of our experiments indicate that the SCUT-FBP dataset provides a reliable benchmark for facial beauty perception.

Citations (108)

Summary

We haven't generated a summary for this paper yet.