Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 40 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 101 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 161 tok/s Pro
2000 character limit reached

From Microscopic Heterogeneity to Macroscopic Complexity in the Contrarian Voter Model (1510.04467v1)

Published 15 Oct 2015 in cond-mat.stat-mech, cs.IT, math.IT, nlin.AO, and physics.data-an

Abstract: An analytical treatment of a simple opinion model with contrarian behavior is presented. The focus is on the stationary dynamics of the model and in particular on the effect of inhomogeneities in the interaction topology on the stationary behavior. We start from a micro-level Markov chain description of the model. Markov chain aggregation is then used to derive a macro chain for the complete graph as well as a meso-level description for the two-community graph composed of two (weakly) coupled sub-communities. In both cases, a detailed understanding of the model behavior is possible using Markov chain tools. More importantly, however, this setting provides an analytical scenario to study the discrepancy between the homogeneous mixing case and the model on a slightly more complex topology. We show that memory effects are introduced at the macro level when we aggregate over agent attributes without sensitivity to the microscopic details and quantify these effects using concepts from information theory. In this way, the method facilitates the analysis of the relation between microscopic processes and a their aggregation to a macroscopic level of description and informs about the complexity of a system introduced by heterogeneous interaction relations.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)