Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 88 tok/s
Gemini 2.5 Pro 59 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 210 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

VB calibration to improve the interface between phone recognizer and i-vector extractor (1510.03203v2)

Published 12 Oct 2015 in stat.ML and cs.LG

Abstract: The EM training algorithm of the classical i-vector extractor is often incorrectly described as a maximum-likelihood method. The i-vector model is however intractable: the likelihood itself and the hidden-variable posteriors needed for the EM algorithm cannot be computed in closed form. We show here that the classical i-vector extractor recipe is actually a mean-field variational Bayes (VB) recipe. This theoretical VB interpretation turns out to be of further use, because it also offers an interpretation of the newer phonetic i-vector extractor recipe, thereby unifying the two flavours of extractor. More importantly, the VB interpretation is also practically useful: it suggests ways of modifying existing i-vector extractors to make them more accurate. In particular, in existing methods, the approximate VB posterior for the GMM states is fixed, while only the parameters of the generative model are adapted. Here we explore the possibility of also mildly adjusting (calibrating) those posteriors, so that they better fit the generative model.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube