Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discriminatively Re-trained i-vector Extractor for Speaker Recognition (1810.13183v1)

Published 31 Oct 2018 in eess.AS and cs.SD

Abstract: In this work we revisit discriminative training of the i-vector extractor component in the standard speaker verification (SV) system. The motivation of our research lies in the robustness and stability of this large generative model, which we want to preserve, and focus its power towards any intended SV task. We show that after generative initialization of the i-vector extractor, we can further refine it with discriminative training and obtain i-vectors that lead to better performance on various benchmarks representing different acoustic domains.

Citations (5)

Summary

We haven't generated a summary for this paper yet.