Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Distributed Inference for Relay-Assisted Sensor Networks With Intermittent Measurements Over Fading Channels (1509.09282v1)

Published 30 Sep 2015 in cs.IT, cs.DC, and math.IT

Abstract: In this paper, we consider a general distributed estimation problem in relay-assisted sensor networks by taking into account time-varying asymmetric communications, fading channels and intermittent measurements. Motivated by centralized filtering algorithms, we propose a distributed innovation-based estimation algorithm by combining the measurement innovation (assimilation of new measurement) and local data innovation (incorporation of neighboring data). Our algorithm is fully distributed which does not need a fusion center. We establish theoretical results regarding asymptotic unbiasedness and consistency of the proposed algorithm. Specifically, in order to cope with time-varying asymmetric communications, we utilize an ordering technique and the generalized Perron complement to manipulate the first and second moment analyses in a tractable framework. Furthermore, we present a performance-oriented design of the proposed algorithm for energy-constrained networks based on the theoretical results. Simulation results corroborate the theoretical findings, thus demonstrating the effectiveness of the proposed algorithm.

Citations (9)

Summary

We haven't generated a summary for this paper yet.