Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Efficient Empowerment (1509.08455v1)

Published 28 Sep 2015 in stat.ML and cs.LG

Abstract: Empowerment quantifies the influence an agent has on its environment. This is formally achieved by the maximum of the expected KL-divergence between the distribution of the successor state conditioned on a specific action and a distribution where the actions are marginalised out. This is a natural candidate for an intrinsic reward signal in the context of reinforcement learning: the agent will place itself in a situation where its action have maximum stability and maximum influence on the future. The limiting factor so far has been the computational complexity of the method: the only way of calculation has so far been a brute force algorithm, reducing the applicability of the method to environments with a small set discrete states. In this work, we propose to use an efficient approximation for marginalising out the actions in the case of continuous environments. This allows fast evaluation of empowerment, paving the way towards challenging environments such as real world robotics. The method is presented on a pendulum swing up problem.

Citations (7)

Summary

We haven't generated a summary for this paper yet.