Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

CRDT: Correlation Ratio Based Decision Tree Model for Healthcare Data Mining (1509.07266v1)

Published 24 Sep 2015 in cs.AI and cs.DB

Abstract: The phenomenal growth in the healthcare data has inspired us in investigating robust and scalable models for data mining. For classification problems Information Gain(IG) based Decision Tree is one of the popular choices. However, depending upon the nature of the dataset, IG based Decision Tree may not always perform well as it prefers the attribute with more number of distinct values as the splitting attribute. Healthcare datasets generally have many attributes and each attribute generally has many distinct values. In this paper, we have tried to focus on this characteristics of the datasets while analysing the performance of our proposed approach which is a variant of Decision Tree model and uses the concept of Correlation Ratio(CR). Unlike IG based approach, this CR based approach has no biasness towards the attribute with more number of distinct values. We have applied our model on some benchmark healthcare datasets to show the effectiveness of the proposed technique.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.