Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Peregrine comb: multiple compression points for Peregrine rogue waves in periodically modulated nonlinear Schr{ö}dinger equations (1509.06976v1)

Published 23 Sep 2015 in nlin.PS and nlin.SI

Abstract: It is shown that sufficiently large periodic modulations in the coefficients of a nonlinear Schr{\"o}dinger equation can drastically impact the spatial shape of the Peregrine soliton solutions: they can develop multiple compression points of the same amplitude, rather than only a single one, as in the spatially homogeneous focusing nonlinear Schr{\"o}dinger equation. The additional compression points are generated in pairs forming a comb-like structure. The number of additional pairs depends on the amplitude of the modulation but not on its wavelength, which controls their separation distance. The dynamics and characteristics of these generalized Peregrine soliton are analytically described in the case of a completely integrable modulation. A numerical investigation shows that their main properties persist in nonintegrable situations, where no exact analytical expression of the generalized Peregrine soliton is available. Our predictions are in good agreement with numerical findings for an interesting specific case of an experimentally realizable periodically dispersion modulated photonic crystal fiber. Our results therefore pave the way for the experimental control and manipulation of the formation of generalized Peregrine rogue waves in the wide class of physical systems modeled by the nonlinear Schr{\"o}dinger equation.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.