Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

On a magnetic characterization of spectral minimal partitions (1509.05304v1)

Published 17 Sep 2015 in math.SP

Abstract: Given a bounded open set $\Omega$ in $ \mathbb Rn$ (or in a Riemannian manifold) and a partition of $\Omega$ by $k$ open sets $D_j$, we consider the quantity $\max_j \lambda(D_j)$ where $\lambda(D_j)$ is the ground state energy of the Dirichlet realization of the Laplacian in $D_j$. If we denote by $ \mathfrak L_k(\Omega)$ the infimum over all the $k$-partitions of $ \max_j \lambda(D_j)$, a minimal $k$-partition is then a partition which realizes the infimum. When $k=2$, we find the two nodal domains of a second eigenfunction, but the analysis of higher $k$'s is non trivial and quite interesting. In this paper, we give the proof of one conjecture formulated previously by V. Bonnaillie-Noel and B. Helffer about a magnetic characterization of the minimal partitions when $n=2$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.